Compound stress assignment emerges from the lexicon

Ingo Plag
Universität Siegen

presenting joint work with
Melanie Bell, Gero Kunter, Sabine Arndt-Lappe, and Kristina Kösling

English compound stress

• Most N+N compounds in English are stressed on left constituent
 e.g. bookstore, watchmaker
• Compound stress rule, Chomsky & Halle (1968)
• Many exceptions:
 Boston marathon, Penny Lane, summer night, aluminum foil, morning paper, silk tie ...
• How can we account for this variability?
English compound stress

• Most N+N compounds in English are stressed on left constituent
e.g. bookstore, watchmaker

• Compound stress rule, Chomsky & Halle (1968)

• Many exceptions:
 Boston marathon, Penny Lane, summer night, aluminum foil, morning paper, silk tie ...

• How can we account for this variability?
English compound stress

- Most N+N compounds in English are stressed on left constituent
e.g. *bookstore*, *watchmaker*

- Compound stress rule, Chomsky & Halle (1968)
 - Many exceptions:
 Boston marathon, Penny Lane, summer night, aluminum foil, morning paper, silk tie...
 - How can we account for this variability?
English compound stress

• Most N+N compounds in English are stressed on left constituent
e.g. bookstore, watchmaker

• Compound stress rule, Chomsky & Halle (1968)

• Many exceptions:
 Boston marathon, Penny Lane, summer night, aluminum foil, morning paper, silk tie ...

• How can we account for this variability?
English compound stress

- Most N+N compounds in English are stressed on left constituent
e.g. *bookstore*, *watchmaker*
- Compound stress rule, Chomsky & Halle (1968)
- Many exceptions: *Boston marathon, Penny Láne, summer níght, aluminum foil, morning páper, silk tíe ...*
- How can we account for this variability?
The hypotheses

- H1: The structural hypothesis (e.g. Giegerich 2004)
 - Modifier-head structures are regularly stressed on the RIGHT constituent (*steel bridge*)
 - Argument-head structures are always LEFT-stressed (*ópera singer*)
 - Left stress on modifier-head structures is due to lexicalization (*ópera glasses*)

- H2: The semantic hypothesis (e.g. Fudge 1984)
 - Stress assignment according to semantic categories (e.g. locative compounds are right-stressed, *Boston hárbour*)
The hypotheses

- **H1: The structural hypothesis** (e.g. Giegerich 2004)
 - Modifier-head structures are regularly stressed on the RIGHT constituent (*steel bridge*)
 - Argument-head structures are always LEFT-stressed (*ópera singer*)
 - Left stress on modifier-head structures is due to lexicalization (*ópera glasses*)

- **H2: The semantic hypothesis** (e.g. Fudge 1984)
 - Stress assignment according to semantic categories (e.g. locative compounds are right-stressed, *Boston hárbour*)
The hypotheses

- **H1: The structural hypothesis** (e.g. Giegerich 2004)
 - Modifier-head structures are regularly stressed on the RIGHT constituent (*steel bridge*)
 - Argument-head structures are always LEFT-stressed (*ópera singer*)
 - Left stress on modifier-head structures is due to lexicalization (*ópera glasses*)

- **H2: The semantic hypothesis** (e.g. Fudge 1984)
 - Stress assignment according to semantic categories (e.g. locative compounds are right-stressed, *Boston hárbour*)
The hypotheses

- **H1: The structural hypothesis** (e.g. Giegerich 2004)
 - Modifier-head structures are regularly stressed on the RIGHT constituent (*steel bridge*)
 - Argument-head structures are always LEFT-stressed (*ópera singer*)
 - Left stress on modifier-head structures is due to lexicalization (*ópera glasses*)

- **H2: The semantic hypothesis** (e.g. Fudge 1984)
 - Stress assignment according to semantic categories (e.g. locative compounds are right-stressed, *Boston harbour*)
The hypotheses

- **H1: The structural hypothesis** (e.g. Giegerich 2004)
 - Modifier-head structures are regularly stressed on the RIGHT constituent (*steel bridge*)
 - Argument-head structures are always LEFT-stressed (*ópera singer*)
 - Left stress on modifier-head structures is due to lexicalization (*ópera glasses*)

- **H2: The semantic hypothesis** (e.g. Fudge 1984)
 - Stress assignment according to semantic categories (e.g. locative compounds are right-stressed, *Boston hárbour*)
The hypotheses

- **H1: The structural hypothesis** (e.g. Giegerich 2004)
 - Modifier-head structures are regularly stressed on the RIGHT constituent (*steel bridge*)
 - Argument-head structures are always LEFT-stressed (*ópera singer*)
 - Left stress on modifier-head structures is due to lexicalization (*ópera glasses*)

- **H2: The semantic hypothesis** (e.g. Fudge 1984)
 - Stress assignment according to semantic categories (e.g. locative compounds are right-stressed, *Boston harbour*)
The hypotheses

- **H1: The structural hypothesis** (e.g. Giegerich 2004)
 - Modifier-head structures are regularly stressed on the RIGHT constituent (*steel bridge*)
 - Argument-head structures are always LEFT-stressed (*ópera singer*)
 - Left stress on modifier-head structures is due to lexicalization (*ópera glasses*)

- **H2: The semantic hypothesis** (e.g. Fudge 1984)
 - Stress assignment according to semantic categories (e.g. locative compounds are right-stressed, *Boston hárbour*)
The Hypotheses, cont.

- **H3: The analogical hypothesis** (e.g. Schmerling 1971, Liberman and Sproat 1992, Plag 2006)
 - Stress assignment in analogy to similar compounds in the lexicon.
 - Constituent family stress bias:
 - right (N2) family of *street*: left stress bias (cf. Báuer Street)
 - right (N2) family of *avenue*: right stress bias (cf. Giegerich Avenue)
The Hypotheses, cont.

- **H3: The analogical hypothesis** (e.g. Schmerling 1971, Liberman and Sproat 1992, Plag 2006)
 - Stress assignment in analogy to similar compounds in the lexicon.
 - Constituent family stress bias:
 - right (N2) family of *street*: left stress bias (cf. Báuer *Street*)
 - right (N2) family of *avenue*: right stress bias (cf. Giegerich *Avenue*)
The Hypotheses, cont.

- **H3: The analogical hypothesis** (e.g. Schmerling 1971, Liberman and Sproat 1992, Plag 2006)
 - Stress assignment in analogy to similar compounds in the lexicon.
 - Constituent family stress bias:
 - right (N2) family of *street*: left stress bias (cf. Báuer Street)
 - right (N2) family of *avenue*: right stress bias (cf. Giegerich Avenue)
The Hypotheses, cont.

- **H3: The analogical hypothesis** (e.g. Schmerling 1971, Liberman and Sproat 1992, Plag 2006)
 - Stress assignment in analogy to similar compounds in the lexicon.
 - Constituent family stress bias:
 - right (N2) family of *street*: left stress bias (cf. Báuer Street)
 - right (N2) family of *avenue*: right stress bias (cf. Giegerich Avenue)
The Hypotheses, cont.

- **H3: The analogical hypothesis** (e.g. Schmerling 1971, Liberman and Sproat 1992, Plag 2006)
 - Stress assignment in analogy to similar compounds in the lexicon.
 - Constituent family stress bias:
 - right (N2) family of *street*: left stress bias (cf. Báuer Street)
 - right (N2) family of *avenue*: right stress bias (cf. Giegerich Avenue)
The Hypotheses, cont.

• H3: The analogical hypothesis (e.g. Schmerling 1971, Liberman and Sproat 1992, Plag 2006)
 • Stress assignment in analogy to similar compounds in the lexicon.
 • Constituent family stress bias:
 • right (N2) family of *street*: left stress bias (cf. Báuer Street)
 • right (N2) family of *avenue*: right stress bias (cf. Giegerich Ávenue)
The Hypotheses, cont.

- **H3: The analogical hypothesis** (e.g. Schmerling 1971, Liberman and Sproat 1992, Plag 2006)
 - Stress assignment in analogy to similar compounds in the lexicon.
 - Constituent family stress bias:
 - right (N2) family of *street*: left stress bias (cf. Báuer Street)
 - right (N2) family of *avenue*: right stress bias (cf. Giegerich Ávenue)
The Hypotheses, cont.

- H4: More informative constituents tend to attract stress (e.g. Ladd 1986, Bell 2008)
 - 'more informative': 'new', less expectable, less predictable (Shannon 1948)
 - informativity measures:
 - constituent frequency: less frequent words are more informative, have higher probability of being stressed
 - constituent family size: words with small family size are more informative, have higher probability of being stressed
 - number of synonyms (WordNet 'synsets'): few synonyms = semantically more specific = more informative = higher probability of being stressed

This paper:
Results from studies testing (mainly) the effects of analogy and informativity (i.e. H3 and H4)
The Hypotheses, cont.

- H4: More informative constituents tend to attract stress (e.g. Ladd 1986, Bell 2008)
 - ‘more informative’: ‘new’, less expectable, less predictable (Shannon 1948)
 - Informativity measures:
 - constituent frequency: less frequent words are more informative, have higher probability of being stressed
 - constituent family size: words with small family size are more informative, have higher probability of being stressed
 - number of synonyms (WordNet ‘synsets’): few synonyms = semantically more specific = more informative = higher probability of being stressed

This paper:
Results from studies testing (mainly) the effects of analogy and informativity (i.e. H3 and H4)
The Hypotheses, cont.

- **H4**: More informative constituents tend to attract stress (e.g. Ladd 1986, Bell 2008)
 - ‘more informative’: ‘new’, less expectable, less predictable (Shannon 1948)
 - informativity measures:
 - constituent frequency: less frequent words are more informative, have higher probability of being stressed
 - constituent family size: words with small family size are more informative, have higher probability of being stressed
 - number of synonyms (WordNet ‘synsets’): few synonyms = semantically more specific = more informative = higher probability of being stressed

This paper:
Results from studies testing (mainly) the effects of analogy and informativity (i.e. H3 and H4)
The Hypotheses, cont.

- **H4**: More informative constituents tend to attract stress (e.g. Ladd 1986, Bell 2008)
 - ‘more informative’: ‘new’, less expectable, less predictable (Shannon 1948)
 - informativity measures:
 - constituent frequency: less frequent words are more informative, have higher probability of being stressed
 - constituent family size: words with small family size are more informative, have higher probability of being stressed
 - number of synonyms (WordNet ‘synsets’): few synonyms = semantically more specific = more informative = higher probability of being stressed

This paper: Results from studies testing (mainly) the effects of analogy and informativity (i.e. H3 and H4)
The Hypotheses, cont.

• H4: More informative constituents tend to attract stress (e.g. Ladd 1986, Bell 2008)
 • ‘more informative’: ‘new’, less expectable, less predictable (Shannon 1948)
 • informativity measures:
 • constituent frequency: less frequent words are more informative, have higher probability of being stressed
 • constituent family size: words with small family size are more informative, have higher probability of being stressed
 • number of synonyms (WordNet ‘synsets’): few synonyms = semantically more specific = more informative = higher probability of being stressed

This paper:
Results from studies testing (mainly) the effects of analogy and informativity (i.e. H3 and H4)
The Hypotheses, cont.

• **H4**: More informative constituents tend to attract stress (e.g. Ladd 1986, Bell 2008)
 - ‘more informative’: ‘new’, less expectable, less predictable (Shannon 1948)
 - informativity measures:
 - constituent frequency: less frequent words are more informative, have higher probability of being stressed
 - constituent family size: words with small family size are more informative, have higher probability of being stressed
 - number of synonyms (WordNet ‘synsets’): few synonyms = semantically more specific = more informative = higher probability of being stressed

This paper: Results from studies testing (mainly) the effects of analogy and informativity (i.e. H3 and H4)
The Hypotheses, cont.

- **H4**: More informative constituents tend to attract stress (e.g. Ladd 1986, Bell 2008)
 - ‘more informative’: ‘new’, less expectable, less predictable (Shannon 1948)
 - informativity measures:
 - constituent frequency: less frequent words are more informative, have higher probability of being stressed
 - constituent family size: words with small family size are more informative, have higher probability of being stressed
 - number of synonyms (WordNet ‘synsets’): few synonyms = semantically more specific = more informative = higher probability of being stressed

This paper:
Results from studies testing (mainly) the effects of analogy and informativity (i.e. H3 and H4)
Theoretical implications of analogy and informativity

If family bias and informativity measures influence compound stress assignment,
then compound stress assignment emerges from the lexicon, and is not governed by deterministic rules.
Theoretical implications of analogy and informativity

If family bias and informativity measures influence compound stress assignment,
then compound stress assignment emerges from the lexicon,
and is not governed by deterministic rules.
Theoretical implications of analogy and informativity

If family bias and informativity measures influence compound stress assignment, then compound stress assignment emerges from the lexicon, and is not governed by deterministic rules.
Some previous results

- Predictive power of deterministic rules based on the structural and/or semantic hypothesis is very bad.
- Probabilistic and exemplar-based models are much better, but still not quite satisfactory.

What happens if we factor in constituent family bias and informativity measures as predictors?
Some previous results

- Predictive power of deterministic rules based on the structural and/or semantic hypothesis is very bad.
- Probabilistic and exemplar-based models are much better, but still not quite satisfactory.

What happens if we factor in constituent family bias and informativity measures as predictors?
Some previous results

- Predictive power of deterministic rules based on the structural and/or semantic hypothesis is very bad.

- Probabilistic and exemplar-based models are much better, but still not quite satisfactory.

What happens if we factor in constituent family bias and informativity measures as predictors?
Some previous results

- Predictive power of deterministic rules based on the structural and/or semantic hypothesis is very bad.
- Probabilistic and exemplar-based models are much better, but still not quite satisfactory.

What happens if we factor in constituent family bias and informativity measures as predictors?
Some previous results

- Predictive power of deterministic rules based on the structural and/or semantic hypothesis is very bad.
- Probabilistic and exemplar-based models are much better, but still not quite satisfactory.

What happens if we factor in constituent family bias and informativity measures as predictors?
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

1. Teschner & Whitley (2004), CELEX (Baayen et al. 1995),
 Boston Corpus (BURSC, Ostendorf et al. 1996, Plag et al.
 2008)
2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive
models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag *submitted*)
3. Analogy and informativity (Plag, Bell & Kunter *in progress*)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Three studies

1. Analogy: family bias (Plag 2010)
2. Informativity: family size etc. (Bell & Plag submitted)
3. Analogy and informativity (Plag, Bell & Kunter in progress)

Data

2. BNC (and WordNet), production experiment
3. BURSC (with COCA)

Analysis: Multiple logistic regression and generalized additive models
Methodology

Major problem: determine the stress pattern of a given compound

- Dictionary data: whose speech or intuition?
- CELEX: dictionary data plus other data of unclear status
- BURSC: from speech to categorical coding (modeling of acoustics, expert ratings)
Methodology

Major problem: determine the stress pattern of a given compound

- Dictionary data: whose speech or intuition?
- CELEX: dictionary data plus other data of unclear status
- BURSC: from speech to categorical coding (modeling of acoustics, expert ratings)
Methodology

Major problem: determine the stress pattern of a given compound

- Dictionary data: whose speech or intuition?
 - CELEX: dictionary data plus other data of unclear status
 - BURSC: from speech to categorical coding (modeling of acoustics, expert ratings)
Methodology

Major problem: determine the stress pattern of a given compound

- Dictionary data: whose speech or intuition?
- CELEX: dictionary data plus other data of unclear status
- BURSC: from speech to categorical coding (modeling of acoustics, expert ratings)
Methodology

Major problem: determine the stress pattern of a given compound

- Dictionary data: whose speech or intuition?
- CELEX: dictionary data plus other data of unclear status
- BURSC: from speech to categorical coding (modeling of acoustics, expert ratings)
Methodology

Major problem: determine the stress pattern of a given compound

- Dictionary data: whose speech or intuition?
- CELEX: dictionary data plus other data of unclear status
- BURSC: from speech to categorical coding (modeling of acoustics, expert ratings)
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)
- only 3 of them have leftward stress.
- state compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)
- only 3 of them have leftward stress.
- state compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
 - Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)
- only 3 of them have leftward stress.
- state compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)
- only 3 of them have leftward stress.
- state compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)
- only 3 of them have leftward stress.
- state compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)

 - only 3 of them have leftward stress.
 - state compounds have an N1 constituent family bias towards right stress
 - We compute the bias for a given compound without taking that compound’s stress into account
 - We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent *state* (*state administration, state aid, state authority, state benefit, etc.*)
- only 3 of them have leftward stress.
 - *state* compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent *state* (*state administration, state aid, state authority, state benefit, etc.*)
- only 3 of them have leftward stress.
- *state* compounds have an N1 constituent family bias towards right stress

- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)
- only 3 of them have leftward stress.
- state compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Study 1 (Analogy): Methodology

- Compute the constituent families for each compound
- Select data with family size > 1
- Compute constituent family stress bias for each compound’s left and right constituents.

An example (from BURSC)

- 31 compounds with the left constituent state (state administration, state aid, state authority, state benefit, etc.)
- only 3 of them have leftward stress.
- state compounds have an N1 constituent family bias towards right stress
- We compute the bias for a given compound without taking that compound’s stress into account
- We use this family bias as a predictor in our regression analyses
Data

Table: Corpora: size and stress distribution

<table>
<thead>
<tr>
<th></th>
<th>T&W</th>
<th>CELEX</th>
<th>Boston Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>782</td>
<td>2638</td>
<td>535</td>
</tr>
<tr>
<td>leftward stresses</td>
<td>89.5%</td>
<td>94.1%</td>
<td>67.1%</td>
</tr>
</tbody>
</table>
Research questions

• How do models perform that have all types of information at their disposal?

• In particular, which factors survive in such an overall model? Is family bias (i.e. analogy) predictive?
Research questions

- How do models perform that have all types of information at their disposal?
- In particular, which factors survive in such an overall model? Is family bias (i.e., analogy) predictive?
Research questions

- How do models perform that have all types of information at their disposal?
- In particular, which factors survive in such an overall model? Is family bias (i.e. analogy) predictive?
T & W: family bias alone

Figure: Stress patterns by left and right constituent family bias, T&W data.
CELEX: family bias alone

Figure: Stress patterns by left and right constituent family bias, CELEX data.
Boston Corpus: family bias alone

Figure: Stress patterns by left and right constituent family bias, Boston corpus.
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if
- N1 refers to a period or point in time (e.g. night bird)
- N2 is a geographical term (e.g. lee shore)
- N2 is a type of thoroughfare (e.g. chain bridge)
- The compound is a proper noun (e.g. Union Jack)
- N1 is a proper noun (e.g. Achilles tendon)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
 - Semantic categories of constituents or compound
 - Semantic relation between constituents

Hypotheses from the literature: stress on N2 if
- N1 refers to a period or point in time (e.g. night bird)
- N2 is a geographical term (e.g. lee shôre)
- N2 is a type of thoroughfare (e.g. chain brîdge)
- The compound is a proper noun (e.g. Union Jáck)
- N1 is a proper noun (e.g. Achilles téndon)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
 - Semantic relation between constituents

Hypotheses from the literature: stress on N2 if
- N1 refers to a period or point in time (e.g. night bird)
- N2 is a geographical term (e.g. lee shôre)
- N2 is a type of thoroughfare (e.g. chain brîdge)
- The compound is a proper noun (e.g. Union Jáck)
- N1 is a proper noun (e.g. Achilles téndon)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if
- N1 refers to a period or point in time (e.g. night bird)
- N2 is a geographical term (e.g. lee shore)
- N2 is a type of thoroughfare (e.g. chain bridge)
- The compound is a proper noun (e.g. Union Jack)
- N1 is a proper noun (e.g. Achilles tendon)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if

- N1 refers to a period or point in time (e.g. night bird)
- N2 is a geographical term (e.g. lee shôre)
- N2 is a type of thoroughfare (e.g. chain brîdge)
- The compound is a proper noun (e.g. Union Jâck)
- N1 is a proper noun (e.g. Achilles téndon)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if
- N1 refers to a period or point in time (e.g. *night b́írd*)
 - N2 is a geographical term (e.g. *lee shóre*)
 - N2 is a type of thoroughfare (e.g. *chain brídge*)
 - The compound is a proper noun (e.g. *Union Jáck*)
 - N1 is a proper noun (e.g. *Achilles t́éndon*)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if
- N1 refers to a period or point in time (e.g. *night bírd*)
- N2 is a geographical term (e.g. *lee shóre*)
- N2 is a type of thoroughfare (e.g. *chain brídge*)
- The compound is a proper noun (e.g. *Union Jácck*)
- N1 is a proper noun (e.g. *Achilles téndon*)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if

- N1 refers to a period or point in time (e.g. night bírd)
- N2 is a geographical term (e.g. lee shóre)
- N2 is a type of thoroughfare (e.g. chain brídge)
- The compound is a proper noun (e.g. Union Jāck)
- N1 is a proper noun (e.g. Achilles téndon)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if

- N1 refers to a period or point in time (e.g. *night bírd*)
- N2 is a geographical term (e.g. *lee shóre*)
- N2 is a type of thoroughfare (e.g. *chain brídge*)
- The compound is a proper noun (e.g. *Union Jác̣k*)
- N1 is a proper noun (e.g. *Achilles ténдон*)
Including all predictors: family bias, structure, semantics, lexicalization

- Structural: Argument-head vs. modifier-head
- Semantic categories of constituents or compound
- Semantic relation between constituents

Hypotheses from the literature: stress on N2 if

- N1 refers to a period or point in time (e.g. night bírd)
- N2 is a geographical term (e.g. lee shóre)
- N2 is a type of thoroughfare (e.g. chain brídge)
- The compound is a proper noun (e.g. Union Jáck)
- N1 is a proper noun (e.g. Achilles téndon)
Table: List of semantic relations held to trigger rightward stress

<table>
<thead>
<tr>
<th>Semantic relation</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. N1 MAKES N2</td>
<td>firelíght</td>
</tr>
<tr>
<td>7. N2 IS MADE OF N1</td>
<td>potato crísp</td>
</tr>
<tr>
<td>14. N2 IS LOCATED AT/IN/... N1</td>
<td>garden párty</td>
</tr>
<tr>
<td>16. N2 DURING N1</td>
<td>night wátch</td>
</tr>
</tbody>
</table>
Table: List of semantic relations coded, illustrated with one example each

<table>
<thead>
<tr>
<th>Semantic relation</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. N2 CAUSES N1</td>
<td>teargas</td>
</tr>
<tr>
<td>2. N1 CAUSES N2</td>
<td>heat rash</td>
</tr>
<tr>
<td>3. N2 HAS N1</td>
<td>stock market</td>
</tr>
<tr>
<td>4. N1 HAS N2</td>
<td>lung power</td>
</tr>
<tr>
<td>5. N2 MAKES N1</td>
<td>silkworm</td>
</tr>
<tr>
<td>6. N1 MAKES N2</td>
<td>firelight</td>
</tr>
<tr>
<td>7. N2 IS MADE OF N1</td>
<td>potato crisp</td>
</tr>
<tr>
<td>8. N2 USES N1</td>
<td>water mill</td>
</tr>
<tr>
<td>9. N1 USES N2</td>
<td>handbrake</td>
</tr>
<tr>
<td>10. N1 IS N2</td>
<td>child prodigy</td>
</tr>
<tr>
<td>11. N1 IS LIKE N2</td>
<td>kettle drum</td>
</tr>
<tr>
<td>12. N2 FOR N1</td>
<td>travel agency</td>
</tr>
<tr>
<td>13. N2 ABOUT N1</td>
<td>mortality table</td>
</tr>
<tr>
<td>14. N2 IS LOCATED AT/IN/... N1</td>
<td>garden party</td>
</tr>
<tr>
<td>15. N1 IS LOCATED AT/IN/... N2</td>
<td>taxi stand</td>
</tr>
<tr>
<td>16. N2 DURING N1</td>
<td>night watch</td>
</tr>
<tr>
<td>17. N2 IS NAMED AFTER N1</td>
<td>Wellington boot</td>
</tr>
<tr>
<td>18. OTHER</td>
<td>schoolfellow</td>
</tr>
</tbody>
</table>
Lexicalization

- Spelling as a proxy for lexicalization
- More intricate spellings (one word or hyphenated) indicate higher degree of lexicalization (e.g. Plag et al. 2007, 2008)
- Spelling as a predictor in the regression models
Lexicalization

- Spelling as a proxy for lexicalization
 - More intricate spellings (one word or hyphenated) indicate higher degree of lexicalization (e.g. Plag et al. 2007, 2008)
 - Spelling as a predictor in the regression models
Lexicalization

- Spelling as a proxy for lexicalization
- More intricate spellings (one word or hyphenated) indicate higher degree of lexicalization (e.g. Plag et al. 2007, 2008)
- Spelling as a predictor in the regression models
Lexicalization

- Spelling as a proxy for lexicalization
- More intricate spellings (one word or hyphenated) indicate higher degree of lexicalization (e.g. Plag et al. 2007, 2008)
- Spelling as a predictor in the regression models
Results: all predictors

Table: Effects of different kinds of predictors

<table>
<thead>
<tr>
<th>Type of effect</th>
<th>Significance in corpus</th>
<th>Strength (highest odds ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>family bias</td>
<td>CELEX, BURSC</td>
<td>13.8, 6.2</td>
</tr>
<tr>
<td>semantics</td>
<td>CELEX, BURSC</td>
<td>4.6, 2.0</td>
</tr>
<tr>
<td>spelling</td>
<td>CELEX</td>
<td>14.5, -</td>
</tr>
</tbody>
</table>
Results: all predictors

Table: Predictive power of different kinds of variables

<table>
<thead>
<tr>
<th>Effects included</th>
<th>C for CELEX</th>
<th>C for BURSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>only family bias</td>
<td>0.75</td>
<td>0.78</td>
</tr>
<tr>
<td>only other predictors</td>
<td>0.83</td>
<td>0.66</td>
</tr>
<tr>
<td>all predictors</td>
<td>0.90</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Study 2 (Informativity): Methodology

- Sample of compounds from BNC demographic
- Production experiment with this sample, 4 elicited tokens per type
- Expert ratings as left or right for each token
- Compute measures of informativity (based on BNC and WordNet)
- Code prevalent semantic categories
- Fit logistic regression models and generalized additive models to non-variable types ($N_{left}=341$, $N_{right}=200$)
Study 2 (Informativity): Methodology

- Sample of compounds from BNC demographic
- Production experiment with this sample, 4 elicited tokens per type
- Expert ratings as left or right for each token
- Compute measures of informativity (based on BNC and WordNet)
- Code prevalent semantic categories
- Fit logistic regression models and generalized additive models to non-variable types (N(left)=341, N(right)=200)
Study 2 (Informativity): Methodology

- Sample of compounds from BNC demographic
- Production experiment with this sample, 4 elicited tokens per type
 - Expert ratings as left or right for each token
 - Compute measures of informativity (based on BNC and WordNet)
 - Code prevalent semantic categories
 - Fit logistic regression models and generalized additive models to non-variable types ($N_{left}=341$, $N_{right}=200$)
Study 2 (Informativity): Methodology

- Sample of compounds from BNC demographic
- Production experiment with this sample, 4 elicited tokens per type
- Expert ratings as left or right for each token
 - Compute measures of informativity (based on BNC and WordNet)
 - Code prevalent semantic categories
 - Fit logistic regression models and generalized additive models to non-variable types ($N_{left}=341$, $N_{right}=200$)
Study 2 (Informativity): Methodology

- Sample of compounds from BNC demographic
- Production experiment with this sample, 4 elicited tokens per type
- Expert ratings as left or right for each token
- Compute measures of informativity (based on BNC and WordNet)
 - Code prevalent semantic categories
 - Fit logistic regression models and generalized additive models to non-variable types ($N_{\text{left}}=341$, $N_{\text{right}}=200$)
Study 2 (Informativity): Methodology

- Sample of compounds from BNC demographic
- Production experiment with this sample, 4 elicited tokens per type
- Expert ratings as left or right for each token
- Compute measures of informativity (based on BNC and WordNet)
- Code prevalent semantic categories
 - Fit logistic regression models and generalized additive models to non-variable types ($N_{left}=341$, $N_{right}=200$)
Study 2 (Informativity): Methodology

- Sample of compounds from BNC demographic
- Production experiment with this sample, 4 elicited tokens per type
- Expert ratings as left or right for each token
- Compute measures of informativity (based on BNC and WordNet)
- Code prevalent semantic categories
- Fit logistic regression models and generalized additive models to non-variable types ($N_{left}=341$, $N_{right}=200$)
Table: Effects of different kinds of predictors, $C=0.923$, (0.80 without semantics)

<table>
<thead>
<tr>
<th>Type of effect</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>family size/constituent frequency</td>
<td>yes</td>
</tr>
<tr>
<td>synsets</td>
<td>yes (lrm)/no (gam)</td>
</tr>
<tr>
<td>semantics</td>
<td>yes</td>
</tr>
<tr>
<td>lexicalization</td>
<td>yes</td>
</tr>
</tbody>
</table>
BNC: interaction of N1 and N2 family sizes

- Darker shading indicates higher probability of stress on N1.
- Large N2 family size and small N1 family size: N1 highly informative, hence stress on N1.
- Small N2 family size and large N1 family size: N2 highly informative, hence stress on N2.
BNC: interaction of N1 and N2 family sizes

• Darker shading indicates higher probability of stress on N1

- Large N2 family size and small N1 family size:
 N1 highly informative, hence stress on N1

- Small N2 family size and large N1 family size:
 N2 highly informative, hence stress on N2
BNC: interaction of N1 and N2 family sizes

• Darker shading indicates higher probability of stress on N1
• Large N2 family size and small N1 family size: N1 highly informative, hence stress on N1
• Small N2 family size and large N1 family size: N2 highly informative, hence stress on N2
BNC: interaction of N1 and N2 family sizes

- Darker shading indicates higher probability of stress on N1.
- Large N2 family size and small N1 family size: N1 highly informative, hence stress on N1.
- Small N2 family size and large N1 family size: N2 highly informative, hence stress on N2.

Interaction of family sizes

N2 family size (standardized)

N1 family size (standardized)
BNC: interaction of N1 and N2 synsets

- Proportions given in the graph indicate the probability of stress on N2.
- N2 receives stress if it is highly specific in meaning, hence highly informative, and if N1 is at the same time relatively uninformative.
BNC: interaction of N1 and N2 synsets

- Proportions given in the graph indicate the probability of stress on N2.
- N2 receives stress if it is highly specific in meaning, hence highly informative, and if N1 is at the same time relatively uninformative.
BNC: interaction of N1 and N2 synsets

- proportions given in the graph indicate the probability of stress on N2
- N2 receives stress if it is highly specific in meaning, hence highly informative, and if N1 is at the same time relatively uninformative.
Summary study 2: Informativity measures

- Constituent frequency and constituent family size are equally good predictors.
- Synsets also have an effect in the predicted direction, but are significant only in logistic models (not in the GAMs).
- Lexicalization effects can also be found.
- Informativity is a significant and successful predictor of compound stress.
- Relation of family size and family bias? Two sides of the same coin?
Summary study 2: Informativity measures

- Constituent frequency and constituent family size are equally good predictors
 - Synsets also have an effect in the predicted direction, but are significant only in logistic models (not in the GAMs)
 - Lexicalization effects can also be found
 - Informativity is a significant and successful predictor of compound stress
 - Relation of family size and family bias? Two sides of the same coin?
Summary study 2: Informativity measures

- Constituent frequency and constituent family size are equally good predictors.
- Synsets also have an effect in the predicted direction, but are significant only in logistic models (not in the GAMs).
- Lexicalization effects can also be found.
- Informativity is a significant and successful predictor of compound stress.
- Relation of family size and family bias? Two sides of the same coin?
Summary study 2: Informativity measures

- Constituent frequency and constituent family size are equally good predictors
- Synsets also have an effect in the predicted direction, but are significant only in logistic models (not in the GAMs)
- Lexicalization effects can also be found
 - Informativity is a significant and successful predictor of compound stress
 - Relation of family size and family bias? Two sides of the same coin?
Summary study 2: Informativity measures

- Constituent frequency and constituent family size are equally good predictors.
- Synsets also have an effect in the predicted direction, but are significant only in logistic models (not in the GAMs).
- Lexicalization effects can also be found.
- Informativity is a significant and successful predictor of compound stress.
- Relation of family size and family bias? Two sides of the same coin?
Summary study 2: Informativity measures

- Constituent frequency and constituent family size are equally good predictors
- Synsets also have an effect in the predicted direction, but are significant only in logistic models (not in the GAMs)
- Lexicalization effects can also be found
- Informativity is a significant and successful predictor of compound stress
- Relation of family size and family bias? Two sides of the same coin?
Study 3 (Analogy and informativity): Methodology

- Research question: Analogy or informativity?
- We add informativity measures to data set of study 1 (Plag 2010, family bias)
- family size ratio: $\log \frac{N_2 \text{FamilySize}}{N_1 \text{FamilySize}}$
- with high famSizeRatio we expect left stress, with low famSizeRatio we expect right stress
- Corpus of Contemporary American English, c. 300 mill. words
Research question: Analogy or informativity?
- We add informativity measures to data set of study 1 (Plag 2010, family bias)
- family size ratio: $\log \frac{N_2 \text{FamilySize}}{N_1 \text{FamilySize}}$
- with high famSizeRatio we expect left stress, with low famSizeRatio we expect right stress
- Corpus of Contemporary American English, c. 300 mill. words
Study 3 (Analogy and informativity): Methodology

- Research question: Analogy or informativity?
- We add informativity measures to data set of study 1 (Plag 2010, family bias)
 - family size ratio: \(\log \frac{N_2 \text{FamilySize}}{N_1 \text{FamilySize}} \)
 - with high famSizeRatio we expect left stress, with low famSizeRatio we expect right stress
 - Corpus of Contemporary American English, c. 300 mill. words
Study 3 (Analogy and informativity): Methodology

- Research question: Analogy or informativity?
- We add informativity measures to data set of study 1 (Plag 2010, family bias)
- Family size ratio: log of $\frac{N_2\text{FamilySize}}{N_1\text{FamilySize}}$
- With high famSizeRatio we expect left stress, with low famSizeRatio we expect right stress
- Corpus of Contemporary American English, c. 300 million words
Study 3 (Analogy and informativity): Methodology

- Research question: Analogy or informativity?
- We add informativity measures to data set of study 1 (Plag 2010, family bias)
- family size ratio: log of $\frac{N_2 \text{FamilySize}}{N_1 \text{FamilySize}}$
- with high famSizeRatio we expect left stress, with low famSizeRatio we expect right stress
- Corpus of Contemporary American English, c. 300 mill. words
Study 3 (Analogy and informativity): Methodology

- Research question: Analogy or informativity?
- We add informativity measures to data set of study 1 (Plag 2010, family bias)
- Family size ratio: log of \(\frac{N_2 \text{FamilySize}}{N_1 \text{FamilySize}} \)
- With high famSizeRatio we expect left stress, with low famSizeRatio we expect right stress
- Corpus of Contemporary American English, c. 300 mill. words
Study 3: Results, only informativity

- Significant informativity effect
- Significant lexicalization effect
- Significant effect of distance between the two lexical stresses: the longer the distance, the higher the probability of right stress
Study 3: Results, only informativity

- Significant informativity effect
- Significant lexicalization effect
- Significant effect of distance between the two lexical stresses: the longer the distance, the higher the probability of right stress
Study 3: Results, only informativity

- Significant informativity effect
- Significant lexicalization effect
- Significant effect of distance between the two lexical stresses: the longer the distance, the higher the probability of right stress
Study 3: Results, only informativity

- Significant informativity effect
- Significant lexicalization effect
- Significant effect of distance between the two lexical stresses: the longer the distance, the higher the probability of right stress
Study 3: Results, informativity plus stress bias (without semantics)

- Satisfactory predictive power: $C=0.748$, $N=410$
- Significant informativity effect
- Significant stress bias effect
- Significant lexicalization effect
Study 3: Results, informativity plus stress bias (without semantics)

- Satisfactory predictive power: $C=0.748$, $N=410$
- Significant informativity effect
- Significant stress bias effect
- Significant lexicalization effect
Study 3: Results, informativity plus stress bias (without semantics)

- Satisfactory predictive power: $C=0.748$, $N=410$
- Significant informativity effect
 - Significant stress bias effect
 - Significant lexicalization effect
Study 3: Results, informativity plus stress bias (without semantics)

- Satisfactory predictive power: $C=0.748$, $N=410$
- Significant informativity effect
- Significant stress bias effect
- Significant lexicalization effect
Study 3: Results, informativity plus stress bias (without semantics)

- Satisfactory predictive power: $C=0.748$, $N=410$
- Significant informativity effect
- Significant stress bias effect
- Significant lexicalization effect
Study 3: Effects of family size and bias

Figure: Partial effects of logistic regression model, BURSC
Summary study 3

- Informativity is a significant predictor of compound stress.
- Both family size and family bias are instrumental in compound stress assignment.
- Lexicalization: most robust predictor outside family effects.
Summary study 3

- Informativity is a significant predictor of compound stress
 - Both family size and family bias are instrumental in compound stress assignment
 - Lexicalization: most robust predictor outside family effects
Summary study 3

- Informativity is a significant predictor of compound stress
- Both family size and family bias are instrumental in compound stress assignment
- Lexicalization: most robust predictor outside family effects
Summary study 3

• Informativity is a significant predictor of compound stress
• Both family size and family bias are instrumental in compound stress assignment
• Lexicalization: most robust predictor outside family effects
Conclusion: Summary

- Constituent families and other measures relating to individual and distributed compound representations play a very important role in compound stress assignment.
- Results are similar across corpora and data types.
- Results are similar across analytical methods.
- Semantic and lexicalization effects exist independently of constituent family effects and cannot be treated as epiphenomenal.
- Overall, the lexical measures are good predictors of compound stress assignment.
Conclusion: Summary

- **constituent families** and other measures relating to individual and distributed compound representations play a very important role in compound stress assignment.

- Results are similar across corpora and data types.

- Results are similar across analytical methods.

- Semantic and lexicalization effects exist independently of constituent family effects and cannot be treated as epiphenomenal.

- Overall, the lexical measures are good predictors of compound stress assignment.
Conclusion: Summary

- **constituent families** and other measures relating to individual and distributed compound representations play a very important role in compound stress assignment.
- Results are similar across corpora and data types.
- Results are similar across analytical methods.
- Semantic and lexicalization effects exist independently of constituent family effects and cannot be treated as epiphenomenal.
- Overall, the lexical measures are good predictors of compound stress assignment.
Conclusion: Summary

- **constituent families** and other measures relating to individual and distributed compound representations play a very important role in compound stress assignment.
- Results are similar across corpora and data types.
- Results are similar across analytical methods.
- Semantic and lexicalization effects exist independently of constituent family effects and cannot be treated as epiphenomenal.
- Overall, the lexical measures are good predictors of compound stress assignment.
Conclusion: Summary

- **constituent families** and other measures relating to individual and distributed compound representations play a very important role in compound stress assignment.
- Results are similar across corpora and data types.
- Results are similar across analytical methods.
- Semantic and lexicalization effects exist independently of constituent family effects and cannot be treated as epiphenomenal.
- Overall, the lexical measures are good predictors of compound stress assignment.
Conclusion: Summary

- **constituent families** and other measures relating to individual and distributed compound representations play a very important role in compound stress assignment.
- Results are similar across corpora and data types.
- Results are similar across analytical methods.
- Semantic and lexicalization effects exist independently of constituent family effects and cannot be treated as epiphenomenal.
- Overall, the lexical measures are good predictors of compound stress assignment.
Conclusion: Theoretical implications

- Challenge to rule-based approaches to compound structure, and the theories of grammar or lexicon that underlie them.

Compound stress emerges from the lexicon.
Conclusion: Theoretical implications

- Challenge to rule-based approaches to compound structure, and the theories of grammar or lexicon that underlie them.

 Compound stress emerges from the lexicon.
Conclusion: Theoretical implications

- Challenge to rule-based approaches to compound structure, and the theories of grammar or lexicon that underlie them.

Compound stress emerges from the lexicon.
Conclusion: Theoretical implications

- Challenge to rule-based approaches to compound structure, and the theories of grammar or lexicon that underlie them.

 Compound stress emerges from the lexicon.
Thanks

- Thank you very much for your attention!
- **Acknowledgements**
 - Special thanks go to Harald Baayen for his help with statistical issues, and
 - to the *Deutsche Forschungsgemeinschaft* for funding this research (Grants PL151/5-1, PL151/5-3)
- For **full references**, see the papers on our project homepage. (Just google my name!)