Modeling reduction of *is, am and are* in grammaticalized constructions

Danielle Barth
University of Oregon

March 29, 2011

Quantitative Investigations in Theoretical Linguistics 4
• Background Information
 Grammaticalization
 Grammaticalization and Reduction
 Frequency and Reduction

• The Case of *is, am* and *are*

• The Corpus

• Type of Statistical Model

• Results

• Discussion
Grammaticalization

• A type of language change

• creation of grammatical element from a lexical element or another grammatical element
 ex: English *will ‘want’ > will FUTURE

• sometimes accompanied by phonological reduction of the grammaticalized word
 ex: English *I’ll it to be so
 but not: *I’ll it to be so
Grammaticalization

• results in new paradigmatic and syntagmatic uses and limitations

• sometimes results in a change of form
 – a reduction in length
 – loss of vowels
 – devoicing
 – loss of final consonants
Grammaticalization and Reduction

Why do grammaticalized elements reduce?

- frequency of use (Bybee 2007)

- separate storage in mental lexicon, as homonyms, is required for both these explanations
Frequency and Reduction

• Why do frequent elements reduce?
 – expected words are produced faster and less clearly than surprising words (Pierrehumbert 2002)
 – listeners build up memories of hypo-articulated forms of frequent words, and then in turn use these memories to produce their own speech, further entrenching the idea of a lenition-bias on frequent forms (Pierrehumbert 2001, 2002)
Frequency and Reduction

• Lexical words: Homonyms with different frequencies have different lengths and more frequent words are shorter (Gahl 2008)

• Grammatical words: frequency is an explanatory factor for reduced vowel production in the most frequent meanings of that and of (Bell et al. 2003)
Frequency and Reduction

• Lexical v. grammatical morphemes: grammatical morphemes are shorter than their lexical homophonous morphemes in Dutch (van Bergem 1995)

• For highly frequent function words and their content word homophones, following conditional probability (P(A|B)) predicted reduction (Bell et al 2009)
Reduction

• There are lots of other reasons for phonological/phonetic reduction aside from grammaticalization (Bybee 2007, van Bergem 1995)

• Could theoretically have a case where the source construction reduces and the grammaticalized construction doesn’t reduce
The case of *is*, *am* and *are*

- Grammaticalization research tells us that the grammaticalized, more grammatical variant is supposed to reduce in relation to its source construction, due to a decrease in semantic weight.

- Frequency research tells us that the more frequent homonym will reduce more than a less frequent homonym.
The case of *is, am and are*

- English *be* in the copula construction is the source for the grammaticalized progressive and passive constructions
- In this study, inflections of *be* investigated are *is, am* and *are*
- Both the source and grammaticalized elements can reduce

 She is a welder *She’s a welder*
 She is working *She’s working*
 She is seen *She’s seen*
The case of *is*, *am* and *are*

- The source copular construction is also semantically empty
- The source copular construction is much more frequent than either of the grammaticalized constructions

<table>
<thead>
<tr>
<th></th>
<th>‘s</th>
<th>is</th>
<th>are</th>
<th>‘re</th>
<th>‘m</th>
<th>am</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copula</td>
<td>611,889</td>
<td>579,515</td>
<td>205,514</td>
<td>96,982</td>
<td>89,619</td>
<td>11,711</td>
<td>1,586,230</td>
</tr>
<tr>
<td>Progressive</td>
<td>97,627</td>
<td>110,017</td>
<td>105,696</td>
<td>164,067</td>
<td>55,338</td>
<td>3,426</td>
<td>536,171</td>
</tr>
<tr>
<td>Passive</td>
<td>43,137</td>
<td>54,190</td>
<td>40,736</td>
<td>16,657</td>
<td>5,097</td>
<td>1,300</td>
<td>161,117</td>
</tr>
<tr>
<td>Total</td>
<td>752,653</td>
<td>743,722</td>
<td>351,946</td>
<td>277,706</td>
<td>150,054</td>
<td>16,437</td>
<td>2,292,518</td>
</tr>
</tbody>
</table>

COCA totals for Tokens of Interest by Construction Type as of Nov 19, 2010
Historical Summary

• In Old English
 – The copula construction
 – The forerunner of the progressive construction with durative meaning
 – The BE passive, but restricted mainly to durative (v. perfective) constructions

• In Middle English
 – The progressive construction developed its current meaning and dramatically increased in frequency
 – The BE passive expanded to most passive contexts
The Constructions in PDE

• In present day English, the progressive construction is increasing in frequency (Leech et al. 2009:121,126)

• The BE passive is decreasing in frequency, being replaced by GOT passive (Leech et al. 2009:148)

• This can be seen in COHA (Davies 2010-)
3 is/’s Construction Types in print

Copula, Progressive and Passive Constructions in print from 1800-2010

- Passive
- Copula
- Progressive
- Passive
- Copula
- Progressive

Passive Passive: R^2 Linear = 0.835
Copula Copula: R^2 Linear = 0.202
Progressive Progressive: R^2 Linear = 0.93
Progressive Construction with is/’s in Print: sharp increase
Passive Construction with is/’s in Print: decrease

Passive Construction in Print from 1800-2010

- Passive: is
- Passive Total
- Passive: ’s
- Passive Total
- Passive: ’s
- Passive Total

Passive: is
1. Linear = 0.879
 R^2 = 0.771

Passive Total
1. Linear = 0.635
 R^2 = 0.400

Passive: ’s
1. Linear = 0.804
 R^2 = 0.646

Collocation per million words

Year
Copula Construction with is/’s in print: some increase
Research Question

• Which of the three constructions (copular, progressive, passive) shows the most reduction in spoken (American) English?

 – What factors influence the reduction of the copular, progressive and passive constructions?
The Corpus

• Corpus of Contemporary American English (COCA) (Davies, 2008-)

• Spoken Section has 87,116,763 words (accessed Jan 21, 2011)

• Spoken Section is built from transcripts of live television and radio programs, mostly news programs
Corpus for Model

- A database was created by searching for the targets *is, are, am, 's, 're, 'm*
- Approximately 500 entries for each target
- Database reflected overall frequency of construction types in COCA

<table>
<thead>
<tr>
<th>Construction type</th>
<th>Copula</th>
<th>Progressive</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced: ‘s, ‘m, ‘re</td>
<td>989</td>
<td>544(187)</td>
<td>64</td>
</tr>
<tr>
<td>Unreduced: is, am, are</td>
<td>937</td>
<td>371(82)</td>
<td>131</td>
</tr>
</tbody>
</table>

Number of Constructions by Token Types and Construction Types
Excluded tokens

• Tokens were excluded that had:
 – target with a preceding or following disfluency
 – immediate context of target was grammatically incorrect
 – type of construction was not clear
 – ellipsis
 – subject-verb inversion
 – speaker that was unidentifiable
 – for ARE model only: preceding word other than you, we, they
Variables – random effects

1. Speaker
2. Show - which program the transcript came from
3. Following phoneme - all vowels were collapsed into one category.
4. Preceding Pronoun - only included in the *is* model, which was only model where there were more than 3 pronouns
Type of Statistical Model

• Logistic mixed-effects model
 – logistic: dependent variable is qualitative not quantitative
 – mixed effects: model has both repeatable/fixed effects and random effects

• Bootstrapping done with a fixed-effects logistic regression model with random effects removed

• Numeric variables were tested for co-linearity

• 4 final models were created: 1 full and 3 individual models for each word form
Testing the Statistical Models

- Factors were added and subtracted to the models to get the best fit
- The simpler model was chosen unless the more complex model accounted for significantly more variance, determined by log-likelihood test
- The Index of Concordance (C) is reported for each model, it measures the concordance between predicted probability and the observed responses
- Significance testing of coefficients through `pvals.fnc` (Baayen 2010).
Results summary

- The progressive construction shows significantly more reduction than the copular and passive constructions.
- This is the case even after separating out future constructions, which do not show significantly more reduction than other progressive constructions.
- The copular and passive construction do not significantly differ from one another.
Results for full model

<table>
<thead>
<tr>
<th>Construction type</th>
<th>Copula</th>
<th>Progressive</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced: 're</td>
<td>989</td>
<td>544(187)</td>
<td>64</td>
</tr>
<tr>
<td>Unreduced: are</td>
<td>937</td>
<td>371(82)</td>
<td>131</td>
</tr>
</tbody>
</table>

Note. There is a total of 3036 observations in this model, future constructions in parentheses.

- The Passive and Progressive Constructions are significantly different
Results for full model, C = .943

<table>
<thead>
<tr>
<th>Fixed Factors</th>
<th>MCMC Mean</th>
<th>HPD Lower 95%</th>
<th>HPD Upper 95%</th>
<th>MCMC p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.8862</td>
<td>2.7973</td>
<td>2.9752</td>
<td>0.0000</td>
</tr>
<tr>
<td>Passive construction (v. Progressive)</td>
<td>0.0778</td>
<td>0.0138</td>
<td>0.1377</td>
<td>0.0134</td>
</tr>
<tr>
<td>Copula construction (v. Progressive)</td>
<td>0.0281</td>
<td>-0.0061</td>
<td>0.0626</td>
<td>0.1087</td>
</tr>
<tr>
<td>Frequency of word string: preceding word and target</td>
<td>-0.2567</td>
<td>-0.2709</td>
<td>-0.2430</td>
<td>0.0000</td>
</tr>
<tr>
<td>Frequency of word string: target word and following word</td>
<td>-0.0699</td>
<td>-0.0854</td>
<td>-0.0589</td>
<td>0.0000</td>
</tr>
<tr>
<td>Preceding full BE variant (v. none)</td>
<td>0.0793</td>
<td>0.0448</td>
<td>0.1215</td>
<td>0.0000</td>
</tr>
<tr>
<td>Preceding reduced BE variant (v. none)</td>
<td>-0.0670</td>
<td>-0.1028</td>
<td>-0.0294</td>
<td>0.0004</td>
</tr>
<tr>
<td>Preceding unreducible BE variant (v. none)</td>
<td>0.0179</td>
<td>-0.0391</td>
<td>0.0771</td>
<td>0.5397</td>
</tr>
</tbody>
</table>

Random Effects Highlights:

- President Bush, Hillary Clinton, Al Gore and President Obama don’t reduce
- President G. W. Bush, Condoleezza Rice, Bob Dylan and Michelle Obama reduce
- Phonemes most associated with reduction were [l, r, b] and the phonemes most associated with full variants were [ð, v]. These phonemes do not correspond to the most and least frequent following words
Results for IS model

<table>
<thead>
<tr>
<th>Construction type</th>
<th>Copula</th>
<th>Progressive</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced: 're</td>
<td>429</td>
<td>81 (33)</td>
<td>6</td>
</tr>
<tr>
<td>Unreduced: are</td>
<td>411</td>
<td>52 (17)</td>
<td>40</td>
</tr>
</tbody>
</table>

Note. There is a total of 1019 observations in this model, future constructions in parentheses.

- The Progressive Construction is significantly different than the other 2 construction types
Results for IS model, C = .973

<table>
<thead>
<tr>
<th>Fixed Factors</th>
<th>MCMC Mean</th>
<th>HPD Lower 95%</th>
<th>HPD Upper 95%</th>
<th>MCMC p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.9099</td>
<td>1.6591</td>
<td>2.1344</td>
<td>0.0001</td>
</tr>
<tr>
<td>Passive construction (v. progressive)</td>
<td>0.1945</td>
<td>0.0856</td>
<td>0.3070</td>
<td>0.0006</td>
</tr>
<tr>
<td>Copula construction (v. progressive)</td>
<td>0.0986</td>
<td>0.0349</td>
<td>0.1605</td>
<td>0.0022</td>
</tr>
<tr>
<td>Frequency of word string: preceding word and target</td>
<td>-0.1101</td>
<td>-0.1413</td>
<td>-0.0771</td>
<td>0.0001</td>
</tr>
<tr>
<td>Frequency of word string: target word and following word</td>
<td>-0.0208</td>
<td>-0.0390</td>
<td>-0.0034</td>
<td>0.0168</td>
</tr>
<tr>
<td>Preceding full BE variant (v. none)</td>
<td>0.0756</td>
<td>0.0158</td>
<td>0.1385</td>
<td>0.0178</td>
</tr>
<tr>
<td>Preceding reduced BE (v. none)</td>
<td>-0.0281</td>
<td>-0.0806</td>
<td>0.0229</td>
<td>0.2932</td>
</tr>
<tr>
<td>Preceding unreducible BE variant (v. none)</td>
<td>0.0351</td>
<td>-0.0402</td>
<td>0.1137</td>
<td>0.3732</td>
</tr>
<tr>
<td>Preceding full NPs (v. non-personal pronouns)</td>
<td>0.2381</td>
<td>-0.1032</td>
<td>0.5855</td>
<td>0.1774</td>
</tr>
<tr>
<td>Personal Pronouns (v. non-pers. pronouns)</td>
<td>-0.3070</td>
<td>-0.5739</td>
<td>-0.0381</td>
<td>0.0242</td>
</tr>
<tr>
<td>Length of preceding NP</td>
<td>0.0322</td>
<td>0.0139</td>
<td>0.0513</td>
<td>0.0008</td>
</tr>
</tbody>
</table>
Results for AM model

<table>
<thead>
<tr>
<th>Construction type</th>
<th>Copula</th>
<th>Progressive</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced: 're</td>
<td>372</td>
<td>163(57)</td>
<td>19</td>
</tr>
<tr>
<td>Unreduced: are</td>
<td>303</td>
<td>125(25)</td>
<td>50</td>
</tr>
</tbody>
</table>

Note. There is a total of 1032 observations in this model, future constructions in parentheses.

- The Progressive Construction is significantly different than the other 2 construction types
Results for AM model, C = .988

<table>
<thead>
<tr>
<th>Fixed Factors</th>
<th>MCMC Mean</th>
<th>HPD Lower 95%</th>
<th>HPD Upper 95%</th>
<th>MCMC p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.7633</td>
<td>1.6618</td>
<td>1.8609</td>
<td>0.0001</td>
</tr>
<tr>
<td>Passive construction (v. progressive)</td>
<td>0.1028</td>
<td>0.0134</td>
<td>0.1914</td>
<td>0.0280</td>
</tr>
<tr>
<td>Copula construction (v. progressive)</td>
<td>0.1509</td>
<td>0.0951</td>
<td>0.2084</td>
<td>0.0001</td>
</tr>
<tr>
<td>Preceding full BE variant (v. none)</td>
<td>0.0939</td>
<td>0.0309</td>
<td>0.1587</td>
<td>0.0046</td>
</tr>
<tr>
<td>Preceding reduced BE variant (v. none)</td>
<td>-0.1060</td>
<td>-0.1723</td>
<td>-0.0375</td>
<td>0.0016</td>
</tr>
<tr>
<td>Preceding unreducible BE variant (v. none)</td>
<td>-0.0196</td>
<td>-0.1179</td>
<td>0.0772</td>
<td>0.6978</td>
</tr>
<tr>
<td>Frequency of word string: target word and following word</td>
<td>-0.0537</td>
<td>-0.0782</td>
<td>-0.0292</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Results for ARE model

<table>
<thead>
<tr>
<th>Construction type</th>
<th>Copula</th>
<th>Progressive</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced: ’re</td>
<td>188</td>
<td>300 (97)</td>
<td>39</td>
</tr>
<tr>
<td>Unreduced: are</td>
<td>223</td>
<td>194 (40)</td>
<td>41</td>
</tr>
</tbody>
</table>

Note. There is a total of 985 observations in this model, future constructions in parentheses.

- The Copula and Progressive Constructions are significantly different
Results for ARE model, C = .897

<table>
<thead>
<tr>
<th>Fixed Factors</th>
<th>MCMC Mean</th>
<th>HPD Lower 95%</th>
<th>HPD Upper 95%</th>
<th>MCMC p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.6981</td>
<td>1.5621</td>
<td>1.8163</td>
<td>0.0001</td>
</tr>
<tr>
<td>Passive construction (v. progressive)</td>
<td>-0.0185</td>
<td>-0.1244</td>
<td>0.0936</td>
<td>0.7408</td>
</tr>
<tr>
<td>Copula construction (v. progressive)</td>
<td>0.0761</td>
<td>0.0096</td>
<td>0.1445</td>
<td>0.0294</td>
</tr>
<tr>
<td>Preceding full BE variant (v. none)</td>
<td>0.1495</td>
<td>0.0747</td>
<td>0.2179</td>
<td>0.0004</td>
</tr>
<tr>
<td>Preceding reduced BE variant (v. none)</td>
<td>-0.1017</td>
<td>-0.1784</td>
<td>-0.0260</td>
<td>0.0096</td>
</tr>
<tr>
<td>Preceding unreducible BE variant (v. none)</td>
<td>0.0236</td>
<td>0.0892</td>
<td>0.1331</td>
<td>0.6680</td>
</tr>
<tr>
<td>Second person subject (v. third pers. plural)</td>
<td>-0.2457</td>
<td>-0.3145</td>
<td>-0.1773</td>
<td>0.0001</td>
</tr>
<tr>
<td>First person plural subject (v. third person plural)</td>
<td>-0.0331</td>
<td>0.1044</td>
<td>0.0422</td>
<td>0.3850</td>
</tr>
<tr>
<td>Frequency of word string: target word and following word</td>
<td>-0.0405</td>
<td>0.0694</td>
<td>0.0114</td>
<td>0.0062</td>
</tr>
<tr>
<td>Preceding utterance length</td>
<td>0.0130</td>
<td>0.0040</td>
<td>0.0216</td>
<td>0.0048</td>
</tr>
</tbody>
</table>
Discussion

• Progressive shows more reduction than other construction types

• The most frequent construction type, copular, never showed the most reduction

Neither frequency or grammaticalization alone have an effect on *is*, *am*, and *are*
Discussion

• Grammaticalization does put pressure on mid-frequent progressive and future constructions to reduce
• Progressive/Future construction is double marked, making it time intensive for a common pragmatic context -> [almənə]
• Passive not frequent enough for speakers to experience pressure to reduce, also formal
• Mental representation of passive maybe not fully divorced from representation of copular constructions (partially ambiguous)
Discussion

- Why doesn’t the copula reduce more often?
- Unlike progressive/passive, the copula is not double-marked
- In focused contexts the copula would be stressed, whereas in progressive/passive the participle would probably be stressed
- From transcripts, it’s impossible to know if this is lexicalized or due to speech conditions
- Data with sound files needed to investigate this further
Discussion: preceding *BE*

- Fowler and Housum (1987) showed that a repeated word is reduced after a first mention.
- Here, we get reduced targets associated with reduced previous mentions. Unreduced previous mentions associated with unreduced targets.
- Targets probably not second mention.
- Could be priming or style matching.
- Speaker as a random variable should have factored out some of the noise from certain people just being more likely to use reduced or unreduced variants.
- Also preceding *BE*s could come from another interlocutor (cf. Show as random variable).
Discussion: collocate frequency

• Word string frequency is discussed by Bybee and Scheibman (1999) as a predictor of reduction

• This variable preformed better than two other types of frequency: conditional probability (Bell et al. 2009), log frequency of collocate

• Conditional probability was also significant, but word string frequency preformed better in log-likelihood tests

• The preceding context had a stronger coefficient than the following context
Discussion: Pronouns

• Personal pronouns far more likely to occur with reduced variants
• From random effect we know that the individual pronouns most associated with ‘s were here and what (despite not being personal pronouns)
• Pronouns most associated with is were this and which (these end in sibilants, but preceding sibilant was not a significant factor in the model)
Future research

• Use spoken corpus to find ’re with other NPs than you, we, they
• Using finer measures of reduction: duration measurements from a spoken corpus, laboratory experiment
• Comparing reduction in a contraction-licensed language (English) and a non-contraction-licensed language (German)
• Comparing reduction in verb-aux pairs where verb does not reduce (have∼’ve, has∼’s)

References cont.

Copula Construction in OE

- The copula construction was present in Old English:

 \(Ic \texttt{beo} \texttt{mid} \texttt{eow} \texttt{ealle} \texttt{dagas} \)

 ‘I \texttt{am} with you always’

- Has not changed greatly since then: same syntactic position, same complements – adjectival, nominal, prepositional
Progressive in OE

• One option for expressing a durative meaning was the forerunner of the progressive – BE + present participle with <ende>

\textit{ic mē gebidde to Ȝām Gode þe bīō eardigende on heofonum}

'I pray (at this moment) to the God who \textbf{is dwelling} (not only at this moment) in the heavens' (Quirk and Wrenn 1957:80).
Progressive in ME

• Became more frequent, <ende> became <ing/ung>, perhaps due to analogy with gerunds in locative constructions, i.e. ‘he is on huntung’, progressive meaning

Heo...iuunden þene king þær he wes an slæting

‘and they found the king where he was hunting’

Layamon’s Brut cited by Visser (1966:1095)
Passive in OE

- One option for expressing a passive was BE + past participle, used mostly with durative constructions, BECOME passive used with perfective constructions, but great deal of variation (Quirk and Wrenn 1957:80-81).

Ne bið ðær nænig ealo gebrowen

'No ale *is* (ever) *brewed* there‘

(Quirk and Wrenn 1957:80)
Passive in ME

• Most passives in ME were now expressed with BE auxiliary

he...was well underfangen from the pape Eugenie

'He was well received by Pope Eugenius' (Burrow and Turville-Petre 1996:52)
Variables

1. Construction Type – Copula, Progressive or Passive
2. Occurrence of Preceding BE in 9 preceding words – Full BE (is, am, are), Reduced BE (’s, ’m, ’re), Unreducible BE (be, being, been, was, were), None
3. Log frequency of word string: target word and following word
Variables

4. Log frequency of word string: preceding word and target
5. NP Type – personal pronoun, non-personal pronoun, non-pronominal
6. Length (in words) of preceding NP
7. Length (in words) of preceding utterance
8. Subject – third person plural, first person plural or second person