Shades of salience: multivariate analysis of prototypicality effects in color terms

I. Color in the lab and color in the 'real world' Can we use corpus-based parameters to measure salience?

Can we measure salience beyond BCT?

Anthropological, psycholinguistic and linguistic studies of color categorization have developed a number of quantitative procedures for measuring the psychological and linguistic salience (basicness) of color terms.

However, these techniques designed for

elicitation and color naming tasks remain limited to basic color term (BCT) analyses due to two constraints:

• practical considerations limit the number of color categories and observations

• experiments are designed to test the salience of BCT vs. non-BCT to corroborate Berlin and Kay's universal hierarchy of color categories

BCT evolutionary hierarchy (Berlin & Kay 1969)

Terms used to name colors of compact cars (based on MDS by Tom Ruette)

II. Data and variables

• cars: GM, Chrysler Group, Toyota, Mercedes, etc.

four product domains (USA market):

- clothing: J.Crew, Banana republic, Saks Fifth Avenue, Covington (Sears), Columbia, Authentic Pigment, etc.
- make up: L'Orial, Trish McEvoy, MAC, Avon, Maybelline, etc. • house paints: *Benjamin Moore, Olympic, Glidden,* etc.

	Formal
Form.LenTok	Term length in constituents
Form.LenChar	Term length in characters
Form.LenPhon*	Term length in phonemes
Form.LenSyl*	Term length in syllables
	Experimental
Exp.RT*	reaction time in ms
Exp.Consist*	ratio of consistent to incons
Exp.ElicitFreq*	relative frequency (%) of m experiment
Exp.ElicitRank*	sequence rank of mention i
	Evolutionary
Evol.BK*	position of Term in BCT evo
	Corpus-based
Corp.Freq	frequency of Term used ind
Corp.CompFreq**	frequency of Term in comp
Corp.CompTypes**	n of composites with Term
Corp.TTR**	Term type-token ratio
Corp.Indep**	frequency of Term u
	token freque
Corp.Head**	frequency of Ter
	token freque
Corp.HeadLL**	log-likelihood ratio of Term
Corp.CatNo	number of product categor
Corp.MeanDist	average distance from Term in rgb color space
 * only for a restricted set of Terms ** only for monolexemic Terms 	

red and *pink* in rgb color space

bounds

(types)

used independently ency of Term

rm used as Head

ency of Term

used as Head

ries where Term is used n exemplars to centroid

Alena Anishchanka, Natalia Levshina, Dirk Speelman, Dirk Geeraerts

III. Convergence and divergence in corpus-based and experimental measurements

The first series of analyses explores the relationships between experimental and corpusderived salience parameters. Using the corpus-based parameters from our data and the available experimental data for 34 categories we address the following questions:

• do corpus-based parameters correlate with experimental ones? do experimental and corpus parameters reveal different patterns of salience?

Correlations between salience parameters

evolutionary sequence distinct group

coefficients

Patterns of salience

- experimental parameters highlight the distinction between basic and non-basic color terms corpus parameters partly reflect Berlin and Kay's hierarchy within primary BCT
- white, green, yellow) and secondary (purple, brown, gray, pink) basic color terms
- experimental parameters show stronger separation between secondary basic and non-basic color terms

- frequency-based corpus measurements (type) frequency, token frequency, frequency in compounds) group with experimental measurements • such corpus-based characteristics as the usage of a
- color term in the head position, derivational productivity (measured as ratio), usage in different product categories correlate with Berlin and Kay
- purely formal measurements of color term length show the highest within cluster correlation and form a

Hierarchical cluster analysis of salience parameters for 34 categories based on squared Kendall's tau rank correlation

• both experimental and corpus parameters distinguish between primary (*blue, black, red,*

IV. Salience beyond BCT

sample of 16 400 observations representing four product categories.

Kruskal's Non-metric Multidimensional Scaling, frequency ≥ 20

Results

• salience of color terms is a continuous non-homogeneous parameter rather than a dichotomy between basic and non-basic color terms • most of primary BCT (*black, blue, red, green*) are more distinct in their linguistic behavior compared to secondary BCT (*pink, orange, purple*) and especially to very densely clustered non-basic color terms

• certain non-basic color terms (*khaki, tan, stone*) come close in their linguistic characteristics to secondary BCT

V. Conclusions

• color term usage in the "real world": Linguistics

convergence of corpus-based and experimental measurements of salience: the analyses suggest both convergence of the two paradigms and a specific role of corpusbased measurements, which can be seen as evidence of multidimensional nature of linguistic salience and prototypicality effects

• corpus-based measurements reveal a salience cline going beyond BCT: based on the corpus-based and formal parameters, we hypothesize an extended hierarchy of color terms

• granularity of the analyses and generalizations: the chosen granularity of the analyses specifically addresses the gap between the most salient BCT explored in categorization studies and idiosyncratic color terms hand-picked for the studies of color terms in advertising. This allows making generalizations on a larger scale than has been suggested in the previous research

Alena Anishchanka, alena.anishchanka@arts.kuleuven.be Natalia Levshina, natalia.levshina@arts.kuleuven.be, Univeristy of Leuven, Faculty of Arts, Quantitative Lexicology and Variational Linguistics, Blijde-Inkomstraat 21 (PO Box 3308) – 3000 Leuven - Belgium

The second series of analyses explores the relative salience of 7700 color terms based on a

by applying a bottom-up analysis to a specific context – online marketing materials – we propose an account of real-life color term usage in line with usage-based approach in Cognitive

non-basic monolexemi wine, burgund ivory

idiosyncratic compounds deep sea blue, titanium silver

